dc.contributor.author | Chapman, Adam | |
dc.date.accessioned | 2020-10-22T10:45:59Z | |
dc.date.available | 2020-10-22T10:45:59Z | |
dc.date.issued | 2020-10-22 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3802 | |
dc.description.abstract | In this paper, we prove that given an octonion algebra $A$ over a field $F$, a subring $E \subseteq F$ and an octonion $E$-algebra $R$ inside $A$, the set $S$ of polynomials $f(x) \in A[x]$ satisfying $f(R) \subseteq R$ is an octonion $(S\cap F[x])$-algebra, under the assumption that either $\frac{1}{2} \in R$ or $\operatorname{char}(F) \neq 0$, and $R$ contains the standard generators of $A$ and their inverses.
The project was inspired by a question raised by Werner on whether integer-valued octonion polynomials over the reals form a nonassociative ring. We also prove that the polynomials $\frac{1}{p}(x^{p^2}-x)(x^p-x)$ for prime $p$ are integer-valued in the ring of polynomials $A[x]$ over any real nonsplit Cayley-Dickson algebra $A$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2020-21 | |
dc.subject | Alternative algebras | en_US |
dc.subject | Octonion algebras | en_US |
dc.subject | Ring of polynomials | en_US |
dc.subject | Integer-valued polynomials | en_US |
dc.subject | Cayley-Dickson algebras | en_US |
dc.title | Octonion Polynomials with Values in a Subalgebra | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2020-21 | |
local.scientificprogram | Research in Pairs 2020 | en_US |
local.series.id | OWP-2020-21 | en_US |
local.subject.msc | 17 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2020121012125835956735 | |
dc.identifier.ppn | 1742705405 | |