dc.contributor.author | Ames, Ellery | |
dc.contributor.author | Andréasson, Håkan | |
dc.contributor.author | Rinne, Oliver | |
dc.date.accessioned | 2020-12-15T12:59:44Z | |
dc.date.available | 2020-12-15T12:59:44Z | |
dc.date.issued | 2020-12-15 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3820 | |
dc.description.abstract | We numerically investigate the dynamcis near black hole formation of solutions to the Einstein-Vlasov system in axisymmetry. Our results are obtained using a particle-in-cell and finite difference code based on the (2+1)+1 formulation of the Einstein field equations in axisymmetry. Solutions are launched from generic type initial data and exhibit type I critical behaviour. In particular we find lifetime scaling in solutions containing black holes, and support that the critical solutions are stationary. Our results contain examples of solutions that form black holes, perform damped oscillations, and appear to disperse. We prove that complete dispersal of the solution implies that it has nonpositive binding energy. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2020-22 | |
dc.title | Dynamics of Gravitational Collapse in the Axisymmetric Einstein-Vlasov System | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2020-22 | |
local.scientificprogram | Research in Pairs 2020 | en_US |
local.series.id | OWP-2020-22 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2021011210081898726445 | |
dc.identifier.ppn | 1744533695 | |