dc.contributor.author | Fuhrmann, Gabriel | |
dc.contributor.author | Gröger, Maik | |
dc.contributor.author | Jäger, Tobias | |
dc.contributor.author | Kwietniak, Dominik | |
dc.date.accessioned | 2021-02-02T07:31:53Z | |
dc.date.available | 2021-02-02T07:31:53Z | |
dc.date.issued | 2021-02-02 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3830 | |
dc.description.abstract | In this article, we define amorphic complexity for actions of locally compact $\sigma$-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for $\mathbb Z$-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer's cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2021-03 | |
dc.title | Amorphic Complexity of Group Actions with Applications to Quasicrystals | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2021-03 | |
local.scientificprogram | Research in Pairs 2017 | |
local.series.id | OWP-2021-03 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2021030910405341225645 | |
dc.identifier.ppn | 1751086577 | |