dc.contributor.author | Grinberg, Darij | |
dc.date.accessioned | 2021-03-16T14:45:18Z | |
dc.date.available | 2021-03-16T14:45:18Z | |
dc.date.issued | 2021-03-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3846 | |
dc.description.abstract | Fix a finite undirected graph $\Gamma$ and a vertex $v$ of $\Gamma$. Let $E$ be the set of edges of $\Gamma$. We call a subset $F$ of $E$ $\textit{pandemic}$ if each edge of $\Gamma$ has at least one endpoint that can be connected to $v$ by an $F$-path (i.e., a path using edges from $F$ only). In 1984, Elser showed that the sum of $\left(-1\right)^{\left| F\right|}$ over all pandemic subsets $F$ of $E$ is $0$ if $E\neq\varnothing$. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and a refinement using discrete Morse theory. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2021-05 | |
dc.subject | Graph theory | en_US |
dc.subject | Nuclei | en_US |
dc.subject | Simplicial complex | en_US |
dc.subject | Discrete Morse theory | en_US |
dc.subject | Alternating sum | en_US |
dc.subject | Enumerative combinatorics | en_US |
dc.subject | Inclusion/ exclusion | en_US |
dc.subject | Convexity | en_US |
dc.title | The Elser Nuclei Sum Revisited | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2021-05 | |
local.scientificprogram | OWLF 2020 | en_US |
local.series.id | OWP-2021-05 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2021031910294725471725 | |
dc.identifier.ppn | 1752185447 | |