Show simple item record

dc.contributor.authorGoldbring, Isaac
dc.contributor.editorMaggioni, Marta
dc.contributor.editorJahns, Sophia
dc.date.accessioned2021-06-25T13:12:08Z
dc.date.available2021-06-25T13:12:08Z
dc.date.issued2021-06-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3870
dc.description.abstractGiven a set X, ultrafilters determine which subsets of X should be considered as large. We illustrate the use of ultrafilter methods in combinatorics by discussing two cornerstone results in Ramsey theory, namely Ramsey’s theorem itself and Hindman’s theorem. We then present a recent result in combinatorial number theory that verifies a conjecture of Erdos known as the “B + C conjecture”.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2021,06
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleUltrafilter methods in combinatoricsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2021-006-EN
local.series.idSNAP-2021-006-ENen_US
local.subject.snapshotAlgebra and Number Theoryen_US
local.subject.snapshotDiscrete Mathematics and Foundationsen_US
dc.identifier.urnurn:nbn:de:101:1-2021062809084842468596
dc.identifier.ppn1761650882


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International