Zur Kurzanzeige

dc.contributor.authorde Laat, Tim
dc.contributor.authorZadeh, Safoura
dc.date.accessioned2021-07-13T08:58:53Z
dc.date.available2021-07-13T08:58:53Z
dc.date.issued2021-07-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3873
dc.description.abstractWith every locally compact group $G$, one can associate several interesting bi-invariant subspaces $X(G)$ of the weakly almost periodic functions $\mathrm{WAP}(G)$ on $G$, each of which captures parts of the representation theory of $G$. Under certain natural assumptions, such a space $X(G)$ carries a unique invariant mean and has a natural predual, and we view the weak$^*$-continuity of this mean as a rigidity property of $G$. Important examples of such spaces $X(G)$, which we study explicitly, are the algebra $M_{\mathrm{cb}}A_p(G)$ of $p$-completely bounded multipliers of the Figà-Talamanca-Herz algebra $A_p(G)$ and the $p$-Fourier-Stieltjes algebra $B_p(G)$. In the setting of connected Lie groups $G$, we relate the weak$^*$-continuity of the mean on these spaces to structural properties of $G$. Our results generalise results of Bekka, Kaniuth, Lau and Schlichting.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2021-08
dc.titleWeak*-Continuity of Invariant Means on Spaces of Matrix Coefficientsen_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2021-08
local.scientificprogramOWLF 2021en_US
local.series.idOWP-2021-08en_US
dc.identifier.urnurn:nbn:de:101:1-2021072211012917493580
dc.identifier.ppn1764246071


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige