dc.contributor.author | de Laat, Tim | |
dc.contributor.author | Zadeh, Safoura | |
dc.date.accessioned | 2021-07-13T08:58:53Z | |
dc.date.available | 2021-07-13T08:58:53Z | |
dc.date.issued | 2021-07-13 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3873 | |
dc.description.abstract | With every locally compact group $G$, one can associate several interesting bi-invariant subspaces $X(G)$ of the weakly almost periodic functions $\mathrm{WAP}(G)$ on $G$, each of which captures parts of the representation theory of $G$. Under certain natural assumptions, such a space $X(G)$ carries a unique invariant mean and has a natural predual, and we view the weak$^*$-continuity of this mean as a rigidity property of $G$. Important examples of such spaces $X(G)$, which we study explicitly, are the algebra $M_{\mathrm{cb}}A_p(G)$ of $p$-completely bounded multipliers of the Figà-Talamanca-Herz algebra $A_p(G)$ and the $p$-Fourier-Stieltjes algebra $B_p(G)$. In the setting of connected Lie groups $G$, we relate the weak$^*$-continuity of the mean on these spaces to structural properties of $G$. Our results generalise results of Bekka, Kaniuth, Lau and Schlichting. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2021-08 | |
dc.title | Weak*-Continuity of Invariant Means on Spaces of Matrix Coefficients | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2021-08 | |
local.scientificprogram | OWLF 2021 | en_US |
local.series.id | OWP-2021-08 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2021072211012917493580 | |
dc.identifier.ppn | 1764246071 | |