Zur Kurzanzeige

dc.contributor.authorBalabdaoui, Fadoua
dc.contributor.authorKulagina, Yulia
dc.contributor.editorSingh, Anup Anand
dc.contributor.editorMunday, Sara
dc.contributor.editorJahns, Sophia
dc.date.accessioned2021-07-16T13:45:28Z
dc.date.available2021-07-16T13:45:28Z
dc.date.issued2021-07-16
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3875
dc.description.abstractFinding the total number of species in a population based on a finite sample is a difficult but practically important problem. In this snapshot, we will attempt to shed light on how during World War II, two cryptanalysts, Irving J. Good and Alan M. Turing, discovered one of the most widely applied formulas in statistics. The formula estimates the probability of missing some of the species in a sample drawn from a heterogeneous population. We will provide some intuition behind the formula, show its wide range of applications, and give a few technical details.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2021-08
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleThe Enigma behind the Good–Turing formulaen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2021-008-EN
local.series.idSNAP-2021-008-ENen_US
local.subject.snapshotProbability Theory and Statisticsen_US
dc.identifier.urnurn:nbn:de:101:1-2021072012264249531220
dc.identifier.ppn1763982572


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-NonCommercial-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-ShareAlike 4.0 International