Show simple item record

dc.contributor.authorHaensch, Anna
dc.contributor.editorKober, Thekla
dc.contributor.editorRandecker, Anja
dc.contributor.editorJahns, Sophia
dc.date.accessioned2021-08-24T11:45:12Z
dc.date.available2021-08-24T11:45:12Z
dc.date.issued2021-08-24
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3876
dc.description.abstractIn school, we learn that the interior angles of any triangle sum up to pi. However, there exist spaces different from the usual Euclidean space in which this is not true. One of these spaces is the ''hyperbolic space'', which has another geometry than the classical Euclidean geometry. In this snapshot, we consider the geometry of hyperbolic polytopes, for example polygons, how they tile hyperbolic space, and how reflections along the faces of polytopes give rise to important mathematical structures. The classification of these structures is an open area of research.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2021,07
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleReflections on hyperbolic spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2021-007-EN
local.series.idSNAP-2021-007-ENen_US
local.subject.snapshotAlgebra and Number Theoryen_US
local.subject.snapshotGeometry and Topologyen_US
dc.identifier.urnurn:nbn:de:101:1-2021090713252025462070
dc.identifier.ppn1769677011


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International