Show simple item record

Explicit Methods in Number Theory (hybrid meeting)

dc.date.accessioned2021-09-02T09:24:27Z
dc.date.available2021-09-02T09:24:27Z
dc.date.issued2021
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3880
dc.description.abstractThe series of Oberwolfach meetings on `Explicit methods in number theory' brings together people attacking key problems in number theory via techniques involving concrete or computable descriptions. Here, number theory is interpreted broadly, including algebraic and analytic number theory, Galois theory and inverse Galois problems, arithmetic of curves and higher-dimensional varieties, zeta and $L$-functions and their special values, modular forms and functions. The 2021 meeting featured a seven-lecture minicourse on the distribution of class groups and Selmer groups. The other talks covered a broad range of topics in number theory ranging, for instance, from deterministic integer factorisation to the inverse Galois problem, rational points, and integrality of instanton numbers.
dc.titleExplicit Methods in Number Theory (hybrid meeting)
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2021-34
local.series.idOWR-2021-34
local.subject.msc11
local.subject.msc14
local.date-range18 Jul - 24 Jul 2021
local.workshopcode2129
local.workshoptitleExplicit Methods in Number Theory (hybrid meeting)
local.organizersKarim Belabas, Talence; Bjorn Poonen, Cambridge MA; Fernando Rodriguez-Villegas, Trieste
local.report-nameWorkshop Report 2021,34
local.opc-photo-id2129
local.publishers-doi10.4171/OWR/2021/34


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record