dc.contributor.author | Adamo, Maria Stella | |
dc.contributor.author | Neeb, Karl-Hermann | |
dc.contributor.author | Schober, Jonas | |
dc.date.accessioned | 2021-12-15T07:46:41Z | |
dc.date.available | 2021-12-15T07:46:41Z | |
dc.date.issued | 2021-12-15 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3906 | |
dc.description.abstract | We analyze reflection positive representations in terms of positive Hankel operators. This is motivated by the fact that positive Hankel operators are described in terms of their Carleson measures, whereas the compatibility condition between representations and reflection positive Hilbert spaces is quite intricate. This leads us to the concept of a Hankel positive representation of triples $(G,S,\tau)$, where $G$ is a group, $\tau$ an involutive automorphism of $G$ and $S \subseteq G$ a subsemigroup with $\tau(S) = S^{-1}$. For the triples $(\mathbb Z,\mathbb N,-id_{\mathbb Z})$, corresponding to reflection positive operators, and $(\mathbb R,\mathbb R_+,-id_{\mathbb R})$, corresponding to reflection positive one-parameter groups, we show that every Hankel positive representation can be made reflection positive by a slight change of the scalar product. A key method
consists in using the measure $\mu_H$ on $\mathbb R_+$ defined by a positive Hankel operator $H$ on $H^2(\mathbb C_+)$ to define a Pick function whose imaginary part, restricted to the imaginary axis, provides an operator symbol for $H$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2021-10 | |
dc.subject | Hankel operator | en_US |
dc.subject | Reflection positive representation | en_US |
dc.subject | Hardy space | en_US |
dc.subject | Widom theorem | en_US |
dc.subject | Carleson measure | en_US |
dc.title | Reflection Positivity and Hankel Operators- the Multiplicity Free Case | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2021-10 | |
local.scientificprogram | OWLF 2021 | en_US |
local.series.id | OWP-2021-10 | en_US |
local.subject.msc | 47 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2022011311532137430259 | |
dc.identifier.ppn | 1786996367 | |