Show simple item record

Applied Harmonic Analysis and Data Science (hybrid meeting)

dc.date.accessioned2022-01-14T10:49:26Z
dc.date.available2022-01-14T10:49:26Z
dc.date.issued2021
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3909
dc.description.abstractData science has become a field of major importance for science and technology nowadays and poses a large variety of challenging mathematical questions. The area of applied harmonic analysis has a significant impact on such problems by providing methodologies both for theoretical questions and for a wide range of applications in signal and image processing and machine learning. Building on the success of three previous workshops on applied harmonic analysis in 2012, 2015 and 2018, this workshop focused on several exciting novel directions such as mathematical theory of deep learning, but also reported progress on long-standing open problems in the field.
dc.titleApplied Harmonic Analysis and Data Science (hybrid meeting)
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2021-55
local.series.idOWR-2021-55
local.subject.msc65
local.subject.msc94
local.subject.msc15
local.date-range28 Nov - 04 Dec 2021
local.workshopcode2148
local.workshoptitleApplied Harmonic Analysis and Data Science (hybrid meeting)
local.organizersIngrid Daubechies, Durham; Gitta Kutyniok, München; Holger Rauhut, Aachen; Thomas Strohmer, Davis
local.report-nameWorkshop Report 2021,55
local.opc-photo-id2148
local.publishers-doi10.4171/OWR/2021/55


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record