Show simple item record

dc.contributor.authorMilivojević, Aleksandar
dc.contributor.authorStelzig, Jonas
dc.date.accessioned2022-02-15T07:37:49Z
dc.date.available2022-02-15T07:37:49Z
dc.date.issued2022-02-15
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3920
dc.description.abstractWe introduce and study notions of bigraded formality for the algebra of forms on a complex manifold, along with their relation to higher Aeppli-Bott-Chern-Massey products which extend, in an augmented setting, the case of triple products studied by Angella-Tomassini. We show that these Aeppli-Bott-Chern-Massey products on complex manifolds pull back non-trivially to the blow-up along a complex submanifold, as long their degree is less than the real codimension of the submanifold. We then consider the general question of under which conditions formality is preserved by non-zero degree maps.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-04
dc.subjectComplex manifoldsen_US
dc.subjectFormalityen_US
dc.subjectMassey productsen_US
dc.subjectNon-zero degree mapsen_US
dc.titleAeppli-Bott-Chern-Massey Products, Bigraded Notions of Formality, and Non-Zero Degree Mapsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-04
local.scientificprogramOWRF 2021en_US
local.series.idOWP-2022-04en_US
local.subject.msc32en_US
local.subject.msc55en_US
dc.identifier.urnurn:nbn:de:101:1-2022030211481095094865
dc.identifier.ppn1794632697


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record