Show simple item record

dc.contributor.authorKunkel, Peter
dc.contributor.authorMehrmann, Volker
dc.date.accessioned2022-02-21T15:26:25Z
dc.date.available2022-02-21T15:26:25Z
dc.date.issued2022-02-21
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3921
dc.description.abstractLinear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-05
dc.subjectDifferential-algebraic equationen_US
dc.subjectSelf-adjoint systemen_US
dc.subjectSkew-adjoint systemen_US
dc.subjectDissipative Hamiltonian systemen_US
dc.subjectCanonical form under congruenceen_US
dc.titleLocal and Global Canonical Forms for Differential-Algebraic Equations with Symmetriesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-05
local.scientificprogramOWRF 2021en_US
local.series.idOWP-2022-05en_US
local.subject.msc37en_US
local.subject.msc65en_US
local.subject.msc49en_US
dc.identifier.urnurn:nbn:de:101:1-2022030211394522156641
dc.identifier.ppn1794980709


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record