dc.date.accessioned | 2022-03-01T10:19:33Z | |
dc.date.available | 2022-03-01T10:19:33Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3926 | |
dc.description.abstract | A Dirichlet form $\mathcal{E}$ is a densely defined bilinear form on a Hilbert space of the form $L^2(X,\mu)$, subject to some additional properties, which make sure that $\mathcal{E}$ can be considered as a natural abstraction of the usual Dirichlet energy $\mathcal{E}(f_1,f_2)=\int_D (\nabla f_1,\nabla f_2) $ on a domain $D$ in $\mathbb{R}^m$. The main strength of this theory, however, is that it allows also to treat nonlocal situations such as energy forms on graphs simultaneously. In typical applications, $X$ is a metrizable space, and the theory of Dirichlet forms makes it possible to define notions such as curvature bounds on $X$ (although $X$ need not be a Riemannian manifold), and also to obtain topological information on $X$ in terms of such geometric information. | |
dc.title | Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting) | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2021-58 | |
local.series.id | OWR-2021-58 | |
local.subject.msc | 31 | |
local.date-range | 05 Dec - 11 Dec 2021 | |
local.workshopcode | 2149c | |
local.workshoptitle | Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting) | |
local.organizers | Gilles Carron, Nantes; Batu Güneysu, Chemnitz; Matthias Keller, Potsdam; Kazuhiro Kuwae, Fukuoka | |
local.report-name | Workshop Report 2021,58 | |
local.opc-photo-id | 2149c | |
local.publishers-doi | 10.4171/OWR/2021/58 | |