Show simple item record

dc.contributor.authorDetinko, Alla
dc.contributor.authorFlannery, Dane
dc.contributor.authorHulpke, Alexander
dc.date.accessioned2022-03-22T10:17:41Z
dc.date.available2022-03-22T10:17:41Z
dc.date.issued2022-03-22
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3929
dc.description.abstractWe explore a new computational approach to a classical problem: certifying non-freeness of (2-generator, parabolic) Möbius subgroups of SL(2, $\mathbb{Q}$). The main tools used are algorithms for Zariski dense groups and algorithms to compute a presentation of SL(2, $R$) for a localization $R$ = $\mathbb{Z}$[$\frac{1}{b}]$ of $\mathbb{Z}$. We prove that a Möbius subgroup $G$ is not free by showing that it has finite index in the relevant SL(2, $R$). Further information about the structure of $G$ is obtained; for example, we compute the minimal subgroup of finite index in SL(2, $R$) that contains $G$.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-07
dc.subjectFree groupen_US
dc.subjectMöbius groupen_US
dc.subjectArithmetic groupen_US
dc.subjectAlgorithmen_US
dc.subjectSoftwareen_US
dc.titleDeciding Non-Freeness of Rational Möbius Groupsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-07
local.scientificprogramOWRF 2021en_US
local.series.idOWP-2022-07en_US
local.subject.msc20en_US
local.subject.msc68en_US
dc.identifier.urnurn:nbn:de:101:1-2022032313364285722676
dc.identifier.ppn1796395293


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record