Zur Kurzanzeige

Interpolation, Approximation, and Algebra

dc.date.accessioned2022-04-01T09:23:41Z
dc.date.available2022-04-01T09:23:41Z
dc.date.issued2022
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3932
dc.description.abstractThis report involves two concepts of geometric modeling: multi-variate data interpolation by polynomials, and the study of generalized bary\-centric coordinates. These topics are connected to a wide range of of applications, from computer aided design (CAD) systems for designing airplanes and automobiles to animation in movies to problems in numerical analysis and partial differential equations. Traditionally these topics were studied mostly from an analytic standpoint, but recently advanced algebraic tools have come into the picture. The purpose of the mini-workshop was to bring together a diverse group of researchers with different areas of expertise, drawing from both the approximation theory and algebraic geometry communities, and to explore the connections between the two areas in greater detail.
dc.titleInterpolation, Approximation, and Algebra
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2022-7
local.series.idOWR-2022-7
local.subject.msc13
local.subject.msc14
local.subject.msc41
local.date-range13 Feb - 19 Feb 2022
local.workshopcode2207a
local.workshoptitleInterpolation, Approximation, and Algebra
local.organizersCarl de Boor, Madison; Tomas Sauer, Passau; Hal Schenck, Auburn; Tanya Sorokina, Towson
local.report-nameWorkshop Report 2022,7
local.opc-photo-id2207a
local.publishers-doi10.4171/OWR/2022/7


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige