Show simple item record

dc.contributor.authorThomas, Hugh
dc.contributor.editorMunday, Sara
dc.contributor.editorRandecker, Anja
dc.date.accessioned2022-05-06T08:41:09Z
dc.date.available2022-05-06T08:41:09Z
dc.date.issued2022-05-06
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3940
dc.description.abstractI am going to describe the Robinson–Schensted algorithm which transforms a permutation of the numbers from 1 to n into a pair of combinatorial objects called “standard Young tableaux”. I will then say a little bit about a few of the fascinating properties of this transformation, and how it connects to current research.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2022-02
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleThe Robinson–Schensted algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2022-002-EN
local.series.idSNAP-2022-002-ENen_US
local.subject.snapshotAlgebra and Number Theoryen_US
local.subject.snapshotDiscrete Mathematics and Foundationsen_US
dc.identifier.urnurn:nbn:de:101:1-2022112209191319064337
dc.identifier.ppn1823154727


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International