Show simple item record

dc.contributor.authorFrederick, Christina
dc.contributor.authorYang, Yunan
dc.contributor.editorKohlrus, Jan
dc.contributor.editorRandecker, Anja
dc.date.accessioned2022-05-06T09:07:06Z
dc.date.available2022-05-06T09:07:06Z
dc.date.issued2022-05-06
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3941
dc.description.abstractGeophysicists and mathematicians work together to detect geological structures located deep within the earth by measuring and interpreting echoes from manmade earthquakes. This inverse problem naturally involves the mathematics of wave propagation, but we will see that a different mathematical theory – optimal transport – also turns out to be very useful.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2022-04
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleSeeing through rock with help from optimal transporten_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2022-004-EN
local.series.idSNAP-2022-004-ENen_US
local.subject.snapshotNumerics and Scientific Computingen_US
dc.identifier.urnurn:nbn:de:101:1-2022112209225866434487
dc.identifier.ppn1823156010


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International