Show simple item record

Arbeitsgemeinschaft: Geometric Representation Theory

dc.date.accessioned2022-05-13T07:29:17Z
dc.date.available2022-05-13T07:29:17Z
dc.date.issued2022
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3942
dc.description.abstractOur understanding of algebraic representations of reductive algebraic groups in positive characteristic has seen big advances in the last years and has been largely transformed into the geometric theory of studying parity sheaves on affine Grassmannians and affine flag varieties or, equivalently and more combinatorially, the diagrammatic Hecke category. This has led, among other things, to a geometric proof of the linkage principle and a greatly simplified proof of Lusztig's character formula for large characteristics.
dc.titleArbeitsgemeinschaft: Geometric Representation Theory
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2022-18
local.series.idOWR-2022-18
local.subject.msc14
local.subject.msc17
local.subject.msc20
local.subject.msc32
local.subject.msc55
local.date-range03 Apr - 09 Apr 2022
local.workshopcode2214
local.workshoptitleArbeitsgemeinschaft: Geometric Representation Theory
local.organizersDaniel Juteau, Amiens; Simon Riche, Clermont-Ferrand; Wolfgang Soergel, Freiburg; Geordie Williamson, Sydney
local.report-nameWorkshop Report 2022,18
local.opc-photo-id2214
local.publishers-doi10.4171/OWR/2022/18


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record