Zur Kurzanzeige

Toric Geometry

dc.date.accessioned2022-05-19T08:00:50Z
dc.date.available2022-05-19T08:00:50Z
dc.date.issued2022
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3947
dc.description.abstractToric geometry is a vibrant subfield of algebraic geometry that draws on strong connections to combinatorics. The 2022 workshop brought together a broad group of mathematicians both in-person and virtually to discuss aspects of the field, ranging from K-stability to machine learning.
dc.titleToric Geometry
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2022-17
local.series.idOWR-2022-17
local.subject.msc14
local.subject.msc52
local.subject.msc13
local.date-range27 Mar - 02 Apr 2022
local.workshopcode2213
local.workshoptitleToric Geometry
local.organizersJürgen Hausen, Tübingen; Milena Hering, Edinburgh; Nathan Ilten, Burnaby; Diane Maclagan, Coventry
local.report-nameWorkshop Report 2022,17
local.opc-photo-id2213
local.publishers-doi10.4171/OWR/2022/17


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige