dc.date.accessioned | 2022-05-19T08:00:50Z | |
dc.date.available | 2022-05-19T08:00:50Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3947 | |
dc.description.abstract | Toric geometry is a vibrant subfield of algebraic geometry that
draws on strong connections to combinatorics. The 2022 workshop
brought together a broad group of mathematicians both in-person and
virtually to discuss aspects of the field, ranging from K-stability
to machine learning. | |
dc.title | Toric Geometry | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2022-17 | |
local.series.id | OWR-2022-17 | |
local.subject.msc | 14 | |
local.subject.msc | 52 | |
local.subject.msc | 13 | |
local.date-range | 27 Mar - 02 Apr 2022 | |
local.workshopcode | 2213 | |
local.workshoptitle | Toric Geometry | |
local.organizers | Jürgen Hausen, Tübingen; Milena Hering, Edinburgh; Nathan Ilten, Burnaby; Diane Maclagan, Coventry | |
local.report-name | Workshop Report 2022,17 | |
local.opc-photo-id | 2213 | |
local.publishers-doi | 10.4171/OWR/2022/17 | |