Show simple item record

dc.contributor.authorDietzel, Carsten
dc.contributor.authorMenchón, Paula
dc.contributor.authorVendramin, Leandro
dc.date.accessioned2022-06-29T07:16:43Z
dc.date.available2022-06-29T07:16:43Z
dc.date.issued2022-06-29
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3961
dc.description.abstractWe use Constraint Satisfaction Methods to construct and enumerate finite L-algebras up to isomorphism. These objects were recently introduced by Rump and appear in Garside theory, algebraic logic, and the study of the combinatorial Yang-Baxter equation. There are 377322225 isomorphism classes of $L$-algebras of size eight. The database constructed suggest the existence of bijections between certain classes of $L$-algebras and well-known combinatorial objects. On the one hand, we prove that Bell numbers enumerate isomorphism classes of finite linear $L$-algebras. On the other hand, we also prove that finite regular $L$-algebras are in bijective correspondence with infinite-dimensional Young diagrams.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-11
dc.titleOn the Enumeration of Finite $L$-Algebrasen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-11
local.scientificprogramOWRF 2022en_US
local.series.idOWP-2022-11en_US
local.subject.msc03en_US
local.subject.msc06en_US
dc.identifier.urnurn:nbn:de:101:1-2022112208394129572842
dc.identifier.ppn1823174108


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record