Zur Kurzanzeige

dc.contributor.authorBoyd, Rachael
dc.contributor.authorBregman, Corey
dc.date.accessioned2022-08-02T08:42:59Z
dc.date.available2022-08-02T08:42:59Z
dc.date.issued2022-08-01
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3966
dc.description.abstractWe study the homotopy type of the space $\mathcal{E}(L)$ of unparametrised embeddings of a split link $L=L_1\sqcup \ldots \sqcup L_n$ in $\mathbb{R}^3$. Inspired by work of Brendle and Hatcher, we introduce a semi-simplicial space of separating systems and show that this is homotopy equivalent to $\mathcal{E}(L)$. This combinatorial object provides a gateway to studying the homotopy type of $\mathcal{E}(L)$ via the homotopy type of the spaces $\mathcal{E}(L_i)$. We apply this tool to find a simple description of the fundamental group, or motion group, of $\mathcal{E}(L)$, and extend this to a description of the motion group of embeddings in $S^3$.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-13
dc.subjectEmbedding spacesen_US
dc.subjectHomotopy typeen_US
dc.subjectSemi-simplicial spacesen_US
dc.subjectSplit linksen_US
dc.subjectMotion groupsen_US
dc.titleEmbedding Spaces of Split Linksen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-13
local.scientificprogramOWRF 2021en_US
local.series.idOWP-2022-13en_US
local.subject.msc58en_US
local.subject.msc55en_US
local.subject.msc20en_US
local.subject.msc57en_US
dc.identifier.urnurn:nbn:de:101:1-2022112209002802365536
dc.identifier.ppn1823176461


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige