dc.date.accessioned | 2022-11-18T11:42:33Z | |
dc.date.available | 2022-11-18T11:42:33Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3987 | |
dc.description.abstract | Higher rank Teichmüller theory is the study of certain connected components of character varieties of surface groups in higher rank semisimple Lie groups, with the property that all elements in these components correspond to faithful representations with discrete image. Like classical Teichmüller theory, this relatively recent theory is very rich and builds on a combination of methods from various areas of mathematics. Its many facets were explored in detail during the Arbeitsgemeinschaft. | |
dc.title | Arbeitsgemeinschaft: Higher Rank Teichmüller Theory | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2022-47 | |
local.series.id | OWR-2022-47 | |
local.subject.msc | 30 | |
local.subject.msc | 32 | |
local.date-range | 09 Oct - 14 Oct 2022 | |
local.workshopcode | 2241 | |
local.workshoptitle | Arbeitsgemeinschaft: Higher Rank Teichmüller Theory | |
local.organizers | Fanny Kassel, Bures-sur-Yvette; Beatrice Pozzetti, Heidelberg; Andres Sambarino, Paris; Anna Wienhard, Heidelberg | |
local.report-name | Workshop Report 2022,47 | |
local.opc-photo-id | 2241 | |
local.publishers-doi | 10.4171/OWR/2022/47 | |