Zur Kurzanzeige

dc.contributor.authorDozier, Benjamin
dc.contributor.editorMunday, Sara
dc.contributor.editorRandecker, Anja
dc.date.accessioned2022-12-08T13:52:04Z
dc.date.available2022-12-08T13:52:04Z
dc.date.issued2022-12-08
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3998
dc.description.abstractWe consider surfaces of three types: the sphere, the torus, and many-holed tori. These surfaces naturally admit geometries of positive, zero, and negative curvature, respectively. It is interesting to study straight line paths, known as geodesics, in these geometries. We discuss the issue of counting closed geodesics; this is particularly rich for hyperbolic (negatively curved) surfaces.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2022-13
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleClosed geodesics on surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2022-013-EN
local.series.idSNAP-2022-013-ENen_US
local.subject.snapshotGeometry and Topologyen_US
dc.identifier.urnurn:nbn:de:101:1-2022121211282086552759
dc.identifier.ppn1826793348


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International