Zur Kurzanzeige

Universality: Random Matrices, Random Geometry and SPDEs

dc.date.accessioned2022-12-12T11:25:07Z
dc.date.available2022-12-12T11:25:07Z
dc.date.issued2022
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3999
dc.description.abstractThe postulate that large random systems can be described by limiting objects whose characteristic do not depend on the exact details of the models one started from is central in probability theory, under the name of universality. This workshop was aimed at uncovering the latest developments of this concept in the various topics where it is relevant, namely statistical physics, stochastic partial differential equations, random geometries and random matrices. It was in particular the occasion to feature some important recently introduced universal objects like the stochastic quantization of the Yang-Mills measure in dimensions 2 and 3, the KPZ fixed point, Liouville quantum gravity metrics and other objects connected to the Gaussian free field.
dc.titleUniversality: Random Matrices, Random Geometry and SPDEs
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2022-27
local.series.idOWR-2022-27
local.subject.msc60
local.subject.msc81
local.subject.msc83
local.date-range29 May - 04 Jun 2022
local.workshopcode2222
local.workshoptitleUniversality: Random Matrices, Random Geometry and SPDEs
local.organizersMartin Hairer, London; Grégory Miermont, Lyon; Horng-Tzer Yau, Cambridge MA
local.report-nameWorkshop Report 2022,27
local.opc-photo-id2222
local.publishers-doi10.4171/OWR/2022/27


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige