Zur Kurzanzeige

Mini-Workshop: A Geometric Fairytale full of Spectral Gaps and Random Fruit

dc.date.accessioned2023-02-01T13:36:27Z
dc.date.available2023-02-01T13:36:27Z
dc.date.issued2022
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4009
dc.description.abstractIn many situations, most prominently in quantum mechanics, it is important to understand well the eigenvalues and associated eigenfunctions of certain self-adjoint differential operators. The goal of this workshop was to study the strong link between spectral properties of such operators and the underlying geometry which might be randomly generated. By combining ideas and methods from spectral geometry and probability theory, we hope to stimulate new research including important topics such as Bose--Einstein condensation in random environments.
dc.titleMini-Workshop: A Geometric Fairytale full of Spectral Gaps and Random Fruit
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2022-53
local.series.idOWR-2022-53
local.subject.msc47
local.subject.msc58
local.subject.msc60
local.subject.msc81
local.subject.msc82
local.date-range27 Nov - 03 Dec 2022
local.workshopcode2248b
local.workshoptitleMini-Workshop: A Geometric Fairytale full of Spectral Gaps and Random Fruit
local.organizersJoachim Kerner, Hagen; Matthias Täufer, Hagen; Pavlo Yatsyna, Espoo
local.report-nameWorkshop Report 2022,53
local.opc-photo-id2248b
local.publishers-doi10.4171/OWR/2022/53


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige