dc.contributor.author | Bate, Michael | |
dc.contributor.author | Martin, Benjamin | |
dc.contributor.author | Röhrle, Gerhard | |
dc.date.accessioned | 2023-06-19T10:29:10Z | |
dc.date.available | 2023-06-19T10:29:10Z | |
dc.date.issued | 2023-06-19 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4041 | |
dc.description.abstract | Given a semisimple linear algebraic $k$-group $G$, one has a spherical building $Δ_G$, and one can interpret the geometric realisation $Δ_G(\mathbb R)$ of $Δ_G$ in terms of cocharacters of $G$. The aim of this paper is to extend this construction to the case when $G$ is an arbitrary connected linear algebraic group; we call the resulting object $Δ_G(\mathbb R)$ the spherical edifice of $G$. We also define an object $V_G(\mathbb R)$ which is an analogue of the vector building for a semisimple group; we call $V_G(\mathbb R)$ the vector edifice. The notions of a linear map and an isomorphism between edifices are introduced; we construct some linear maps arising from natural group-theoretic operations. We also devise a family of metrics on $V_G(\mathbb R)$ and show they are all bi-Lipschitz equivalent to each other; with this extra structure, $V_G(\mathbb R)$ becomes a complete metric space. Finally, we present some motivation in terms of geometric invariant theory and variations on the Tits Centre Conjecture. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2023-04 | |
dc.subject | Spherical buildings | |
dc.subject | Edifices | |
dc.subject | Tits Centre Conjecture | |
dc.subject | Geometric invariant theory | |
dc.title | Edifices: Building-like Spaces Associated to Linear Algebraic Groups; In memory of Jacques Tits | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2023-04 | |
local.scientificprogram | OWRF 2023 | en_US |
local.series.id | OWP-2023-04 | en_US |
local.subject.msc | 51 | en_US |
local.subject.msc | 20 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2024032009055997863487 | |
dc.identifier.ppn | 1851039716 | |