Show simple item record

dc.contributor.authorLucatelli Nunes, Fernando
dc.date.accessioned2023-06-19T10:38:07Z
dc.date.available2023-06-19T10:38:07Z
dc.date.issued2023-06-19
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4042
dc.description.abstractLet $\mathbb{A}$ be a $2$-category with suitable opcomma objects and pushouts. We give a direct proof that, provided that the codensity monad of a morphism $p$ exists and is preserved by a suitable morphism, the factorization given by the lax descent object of the higher cokernel of $p$ is up to isomorphism the same as the semantic factorization of $p$, either one existing if the other does. The result can be seen as a counterpart account to the celebrated Bénabou-Roubaud theorem. This leads in particular to a monadicity theorem, since it characterizes monadicity via descent. It should be noted that all the conditions on the codensity monad of $p$ trivially hold whenever $p$ has a left adjoint and, hence, in this case, we find monadicity to be a $2$-dimensional exact condition on $p$, namely, to be an effective faithful morphism of the $2$-category $\mathbb{A} $.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2023-05
dc.subjectformal monadicity theorem
dc.subjectformal theory of monads
dc.subjectcodensity monads
dc.subjectsemantic lax descent factorization
dc.subjectdescent data
dc.subjecttwo-dimensional cokernel diagram
dc.subjectopcomma object
dc.subjecteffective faithful morphism
dc.subjectBénabou-Roubaud theorem
dc.subjectlax descent category
dc.subjecttwo-dimensional limits
dc.titleSemantic Factorization and Descenten_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2023-05
local.scientificprogramOWLF 2022en_US
local.series.idOWP-2023-05
local.subject.msc18en_US
dc.identifier.urnurn:nbn:de:101:1-2024032009100792239584
dc.identifier.ppn1851816585


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record