Show simple item record

dc.contributor.authorClementino, Maria Manuel
dc.contributor.authorLucatelli Nunes, Fernando
dc.date.accessioned2023-06-19T13:21:26Z
dc.date.available2023-06-19T13:21:26Z
dc.date.issued2023-06-19
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4045
dc.description.abstractLet $\mathsf{Ord} $ be the category of (pre)ordered sets. Unlike $\mathsf{Ord}/X$, whose behaviour is well-known, not much can be found in the literature about the lax comma 2-category $\mathsf{Ord} //X$. In this paper we show that the forgetful functor $\mathsf{Ord} //X\to \mathsf{Ord} $ is topological if and only if $X$ is complete. Moreover, under suitable hypothesis, $\mathsf{Ord} // X$ is complete and cartesian closed if and only if $X$ is. We end by analysing descent in this category. Namely, when $X$ is complete and cartesian closed, we show that, for a morphism in $\mathsf{Ord} //X$, being pointwise effective for descent in $\mathsf{Ord} $ is sufficient, while being effective for descent in $\mathsf{Ord} $ is necessary, to be effective for descent in $\mathsf{Ord} //X$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2023-08
dc.subjecteffective descent morphisms
dc.subjectlax comma 2-categories
dc.subjectcomma categories
dc.subjectexponentiability
dc.subjectcartesian closed categories
dc.subjecttopological functors
dc.subjectenriched categories
dc.subjectOrd-enriched categories
dc.titleLax Comma Categories of Ordered Setsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2023-08
local.scientificprogramOWLF 2022
local.series.idOWP-2023-08
local.subject.msc06en_US
local.subject.msc18en_US
dc.identifier.urnurn:nbn:de:101:1-2024032009171342288681
dc.identifier.ppn1851822402


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record