Zur Kurzanzeige

Arbeitsgemeinschaft: Twistor D-Modules and the Decomposition Theorem

dc.date.accessioned2023-06-19T13:55:50Z
dc.date.available2023-06-19T13:55:50Z
dc.date.issued2023
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4047
dc.description.abstractThe purpose of this Arbeitsgemeinschaft is to introduce the notion of twistor $\mathcal{D}$-modules and their main properties. The guiding principle leading this discussion is Simpson's "meta-theorem", which gives a heuristic for generalizing (mixed) Hodge-theoretic results into (mixed) twistor-theoretic results. The strength of the twistor approach is that it enables to enlarge the scope of Hodge theory not only to arbitrary semi-simple perverse sheaves, equivalently semi-simple regular holonomic $\mathcal{D}$-modules via the Riemann-Hilbert correspondence, but also to possibly semi-simple irregular holonomic $\mathcal{D}$-modules. An overarching goal for this session is Mochizuki's proof of the decomposition theorem for semi-simple holonomic $\mathcal{D}$-modules on a smooth complex projective variety, first conjectured by Kashiwara in 1996.
dc.titleArbeitsgemeinschaft: Twistor D-Modules and the Decomposition Theorem
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2023-17
local.series.idOWR-2023-17
local.subject.msc32
local.subject.msc53
local.date-range02 Apr - 07 Apr 2023
local.workshopcode2314
local.workshoptitleArbeitsgemeinschaft: Twistor D-Modules and the Decomposition Theorem
local.organizersTakuro Mochizuki, Kyoto; Claude Sabbah, Palaiseau
local.report-nameWorkshop Report 2023,17
local.opc-photo-id2314
local.publishers-doi10.4171/OWR/2023/17


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige