dc.contributor.author | Lovejoy, Jeremy | |
dc.contributor.author | Osburn, Robert | |
dc.date.accessioned | 2023-07-12T12:10:07Z | |
dc.date.available | 2023-07-12T12:10:07Z | |
dc.date.issued | 2023-07-12 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4054 | |
dc.description.abstract | We prove general fomulas for the deviations of two overpartition ranks from the average, namely \begin{equation*} \overline{D}(a, M) := \sum_{n \geq 0} \Bigl( \overline{N}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} and \begin{equation*} \overline{D}_{2}(a,M) := \sum_{n \geq 0} \Bigl( \overline{N}_{2}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} where $\overline{N}(a, M, n)$ denotes the number of overpartitions of $n$ with rank congruent to $a$ modulo $M$, $\overline{N}_{2}(a, M, n)$ is the number of overpartitions of $n$ with $M_2$-rank congruent to $a$ modulo $M$ and $\overline{p}(n)$ is the number of overpartitions of $n$. These formulas are in terms of Appell-Lerch series and sums of quotients of theta functions and can be used, among other things, to recover any of the numerous overpartition rank difference identities in the literature. We give examples for $M=3$ and $6$. | en_US |
dc.description.sponsorship | The authors would like to thank the Mathematisches Forschungsinstitut Oberwolfach for their
support as this work began during their stay from January 9-22, 2022 as part of the Research
in Pairs program. The second author was partially funded by a SSHN 2022 grant from the
Embassy of France in Ireland during his visit to the Université Paris Cité from December 4-17,
2022. Finally, the authors are grateful to the Max-Planck-Institut für Mathematik for their
hospitality and support during their joint stay from May 1-31, 2023. | |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2023-11 | |
dc.subject | Overpartitions | en_US |
dc.subject | Rank | en_US |
dc.subject | M2-Rank | en_US |
dc.subject | Appell-Lerch series | en_US |
dc.title | Rank Deviations for Overpartitions | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2023-11 | |
local.scientificprogram | OWRF 2022 | en_US |
local.series.id | OWP-2023-11 | en_US |
local.subject.msc | 11 | en_US |
local.subject.msc | 05 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2024032009224643417989 | |
dc.identifier.ppn | 1858138884 | |