dc.contributor.author | Beltran, David | |
dc.contributor.author | Roos, Joris | |
dc.contributor.author | Seeger, Andreas | |
dc.date.accessioned | 2023-11-27T08:30:23Z | |
dc.date.available | 2023-11-27T08:30:23Z | |
dc.date.issued | 2023-11-27 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4085 | |
dc.description.abstract | We consider Bochner-Riesz means on weighted $L^p$ spaces, at the critical index $\lambda(p)=d(\frac 1p-\frac 12)-\frac 12$. For every $A_1$-weight we obtain an extension of Vargas' weak type $(1,1)$ inequality in some range of $p>1$. To prove this result we establish new endpoint results for sparse domination. These are almost optimal in dimension $d= 2$; partial results as well as conditional results are proved in higher dimensions. For the means of index $\lambda_*= \frac{d-1}{2d+2}$ we prove fully optimal sparse bounds. | en_US |
dc.description.sponsorship | This research was supported through the program Oberwolfach Research Fellows by Mathematisches Forschungsinstitut Oberwolfach in 2023.
The authors were supported in part by National Science Foundation grants DMS-1954479 (D.B.), DMS-2154835 (J.R.), DMS-2054220 (A.S.), and by the AEI grants RYC2020-029151-I and PID2022-140977NA-I00 (D.B.). | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2023-16 | |
dc.subject | Bochner-Riesz Means | en_US |
dc.subject | Sparse Domination | en_US |
dc.subject | Endpoint Estimates | en_US |
dc.subject | Weighted Norm Estimates | en_US |
dc.subject | Convergence in Weighted Spaces | en_US |
dc.title | Bochner-Riesz Means at the Critical Index: Weighted and Sparse Bounds | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2023-16 | |
local.scientificprogram | OWRF 2023 | en_US |
local.series.id | OWP-2023-16 | en_US |
local.subject.msc | 42 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2024032009335775010256 | |
dc.identifier.ppn | 1873410646 | |