Show simple item record

dc.contributor.authorBeltran, David
dc.contributor.authorRoos, Joris
dc.contributor.authorSeeger, Andreas
dc.date.accessioned2023-11-27T08:42:18Z
dc.date.available2023-11-27T08:42:18Z
dc.date.issued2023-11-27
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4086
dc.description.abstractWe revisit an $\varepsilon$-removal argument of Tao to obtain sharp $L^p \to L^r(L^p)$ estimates for sums of Bochner-Riesz bumps which are conditional on non-endpoint bounds for single scale bumps. These can be used to obtain sharp conditional sparse bounds for Bochner-Riesz multipliers at the critical index, refining the conditional weak-type $(p,p)$ estimates of Tao.en_US
dc.description.sponsorshipThis research was supported through the program Oberwolfach Research Fellows by Mathematisches Forschungsinstitut Oberwolfach in 2023. The authors were supported in part by National Science Foundation grants DMS-1954479 (D.B.), DMS-2154835 (J.R.), DMS-2054220 (A.S.), and by the AEI grants RYC2020-029151-I and PID2022-140977NA-I00 (D.B.).en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2023-17
dc.subjectBochner-Riesz Meansen_US
dc.subjectWeak-Type Estimatesen_US
dc.titleA Note on Endpoint Bochner-Riesz Estimatesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2023-17
local.scientificprogramOWRF 2023en_US
local.series.idOWP-2023-17en_US
local.subject.msc42en_US
dc.identifier.urnurn:nbn:de:101:1-2024032009360791020605
dc.identifier.ppn1873412452


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record