dc.date.accessioned | 2023-11-29T06:00:34Z | |
dc.date.available | 2023-11-29T06:00:34Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4090 | |
dc.description.abstract | In recent years it has become clear that, contrary to traditional statistical beliefs, methods that interpolate (fit exactly) the noisy training data, can still be statistically optimal. In particular, this phenomenon of "benign overfitting'' or "harmless interpolation'' seems to be close to the practical regimes of modern deep learning systems, and, arguably, underlies many of their behaviors. This workshop brought together experts on the emerging theory of interpolation in statistical methods, its theoretical foundations and applications to machine learning and deep learning. | |
dc.title | Mini-Workshop: Interpolation and Over-parameterization in Statistics and Machine Learning | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2023-41 | |
local.series.id | OWR-2023-41 | |
local.subject.msc | 62 | |
local.date-range | 17 Sep - 22 Sep 2023 | |
local.workshopcode | 2338b | |
local.workshoptitle | Mini-Workshop: Interpolation and Over-parameterization in Statistics and Machine Learning | |
local.organizers | Mikhail Belkin, San Diego; Alexandre Tsybakov, Palaiseau; Fanny Yang, Zürich | |
local.report-name | Workshop Report 2023,41 | |
local.opc-photo-id | 2338b | |
local.publishers-doi | 10.4171/OWR/2023/41 | |