Show simple item record

dc.contributor.authorDrewitz, Alexander
dc.contributor.authorPrévost, Alexis
dc.contributor.authorRodriguez, Pierre-François
dc.date.accessioned2024-01-10T12:48:41Z
dc.date.available2024-01-10T12:48:41Z
dc.date.issued2024-01-08
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4096
dc.description.abstractWe investigate the bond percolation model on transient weighted graphs ${G}$ induced by the excursion sets of the Gaussian free field on the corresponding metric graph. We assume that balls in ${G}$ have polynomial volume growth with growth exponent $\alpha$ and that the Green's function for the random walk on ${G}$ exhibits a power law decay with exponent $\nu$, in the regime $1\leq \nu \leq \frac{\alpha}{2}$. In particular, this includes the cases of ${G}=\mathbb Z^3$, for which $\nu=1$, and ${G}= \mathbb Z^4$, for which $\nu=\frac{\alpha}{2}=2$. For all such graphs, we determine the leading-order asymptotic behavior for the critical one-arm probability, which we prove decays with distance $R$ like $R^{-\frac{\nu}{2}+o(1)}$. Our results are in fact more precise and yield logarithmic corrections when $\nu > 1$ as well as corrections of order $\log \log R$ when $\nu=1$. We further obtain very sharp upper bounds on truncated two-point functions close to criticality, which are new when $\nu > 1$ and essentially optimal when $\nu=1$. This extends previous results from [16].en_US
dc.description.sponsorshipAcknowledgments: This research was supported through the programs ‘Oberwolfach Research Fellows’ and ‘Oberwolfach Leibniz Fellows’ by the Mathematisches Forschungsinstitut Oberwolfach in 2023. The research of AD has been supported by the Deutsche Forschungsgemeinschaft (DFG) grant DR 1096/2-1. AP has been supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/R022615/1, Isaac Newton Trust (INT) grant G101121, European Research Council (ERC) starting grant 804166 (SPRS), and the Swiss NSF. PFR thanks the Research Institute for Mathematical Sciences (RIMS), an International Joint Usage/Research Center located in Kyoto University, for its hospitality.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2024-01
dc.titleArm Exponent for the Gaussian Free Field on Metric Graphs in Intermediate Dimensionsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2024-01
local.scientificprogramOWLF 2023en_US
local.series.idOWP-2024-01en_US
dc.identifier.urnurn:nbn:de:101:1-2024032012222443852836
dc.identifier.ppn1878963511


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record