dc.contributor.author | Negro, Giuseppe | |
dc.contributor.author | Oliveira e Silva, Diogo | |
dc.contributor.editor | Randecker, Anja | |
dc.contributor.editor | Tam, Matthew K. | |
dc.date.accessioned | 2024-01-17T13:18:27Z | |
dc.date.available | 2024-01-17T13:18:27Z | |
dc.date.issued | 2023-12-30 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4105 | |
dc.description.abstract | We describe how simple observations related to vectors of length 1 recently led to the proof of an important mathematical fact: the sharp Stein–Tomas inequality from Fourier restriction theory, a pillar of modern harmonic analysis with surprising applications to number theory and geometric measure theory. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Snapshots of modern mathematics from Oberwolfach;2023-06 | |
dc.rights | Attribution-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.title | 4 = 2 × 2, or the Power of Even Integers in Fourier Analysis | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.14760/SNAP-2023-006-EN | |
local.series.id | SNAP-2023-006-EN | en_US |
local.subject.snapshot | Analysis | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2024031812135149863594 | |
dc.identifier.ppn | 1878354787 | |