Show simple item record

dc.contributor.authorNegro, Giuseppe
dc.contributor.authorOliveira e Silva, Diogo
dc.contributor.editorRandecker, Anja
dc.contributor.editorTam, Matthew K.
dc.date.accessioned2024-01-17T13:18:27Z
dc.date.available2024-01-17T13:18:27Z
dc.date.issued2023-12-30
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4105
dc.description.abstractWe describe how simple observations related to vectors of length 1 recently led to the proof of an important mathematical fact: the sharp Stein–Tomas inequality from Fourier restriction theory, a pillar of modern harmonic analysis with surprising applications to number theory and geometric measure theory.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2023-06
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.title4 = 2 × 2, or the Power of Even Integers in Fourier Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2023-006-EN
local.series.idSNAP-2023-006-ENen_US
local.subject.snapshotAnalysisen_US
dc.identifier.urnurn:nbn:de:101:1-2024031812135149863594
dc.identifier.ppn1878354787


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International