Abstract
Artin and Coxeter groups are naturally occurring generalisations of the braid and symmetric groups respectively. However, unlike for Coxeter groups, many basic group theoretic questions remain unanswered for general Artin groups - most notably the $K(\pi,1)$-conjecture for Artin groups remains open except for certain special families of Artin groups. Recently, Artin groups have also appeared as groups acting on triangulated categories, where the associated spaces of Bridgeland's stability conditions provide new realisations of the corresponding $K(\pi,1)$ spaces. The aim of the workshop is to bring together experts and early career researchers from two seemingly different areas of research: (i) geometric and combinatorial group theory and topology, and (ii) triangulated categories and stability conditions, to explore their intersection via the $K(\pi,1)$-conjecture.