dc.contributor.author | Pinto, Pedro | |
dc.contributor.author | Pischke, Nicholas | |
dc.date.accessioned | 2024-04-16T10:31:21Z | |
dc.date.available | 2024-04-16T10:31:21Z | |
dc.date.issued | 2024-04-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4134 | |
dc.description.abstract | We provide quantitative results on the asymptotic behavior of Dykstra’s algorithm with Bregman projections, a combination of the well-known Dykstra’s algorithm and the method of cyclic Bregman projections, designed to find best approximations and solve the convex feasibility problem in a non-Hilbertian setting. The result we provide arise through the lens of proof mining, a program in mathematical logic which extracts computational information from non-effective proofs. Concretely, we provide a highly uniform and computable rate of metastability of low complexity and, moreover, we also specify general circumstances in which one can obtain full and effective rates of convergence. As a byproduct of our quantitative analysis, we also for the first time establish the strong convergence of Dykstra’s method with Bregman projections in infinite dimensional (reflexive) Banach spaces. | en_US |
dc.description.sponsorship | This research was supported through the program “Oberwolfach Leibniz Fellows” by the Mathematisches Forschungsinstitut Oberwolfach in 2024. Further, the authors were supported by the DFG Project KO 1737/6-2. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2024-04 | |
dc.subject | Convex Feasibility | en_US |
dc.subject | Best Approximation | en_US |
dc.subject | Projection Methods | en_US |
dc.subject | Dykstra’s Algorithm | en_US |
dc.subject | Bregman Projections | en_US |
dc.subject | Legendre Functions | en_US |
dc.subject | Rates of Convergence | en_US |
dc.subject | Metastability | en_US |
dc.subject | Proof Mining | en_US |
dc.title | On Dykstra’s Algorithm with Bregman Projections | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2024-04 | |
local.scientificprogram | OWLF 2024 | en_US |
local.series.id | OWP-2024-04 | en_US |
local.subject.msc | 41 | en_US |
local.subject.msc | 90 | en_US |
local.subject.msc | 03 | en_US |
local.subject.msc | 65 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2404180901076.180889673458 | |
dc.identifier.ppn | 1886208808 | |