Abstract
Let $k$ be a field. We investigate the relationship between subgroups of a pseudo-reductive $k$-group $G$ and its maximal reductive quotient $G'$, with applications to the subgroup structure of $G$. Let $k'/k$ be the minimal field of definition for the geometric unipotent radical of $G$, and let $\pi':G_{k'} \to G'$ be the quotient map. We first characterise those smooth subgroups $H$ of $G$ for which $\pi'(H_{k'})=G'$. We next consider the following questions: given a subgroup $H'$ of $G'$, does there exist a subgroup $H$ of $G$ such that $\pi'(H_{k'})=H'$, and if $H'$ is smooth can we find such a $H$ that is smooth? We find sufficient conditions for a positive answer to these questions. In general there are various obstructions to the existence of such a subgroup $H$, which we illustrate with several examples. Finally, we apply these results to relate the maximal smooth subgroups of $G$ with those of $G'$.