Zur Kurzanzeige

dc.contributor.authorKrattenthaler, Christian
dc.contributor.authorMüller, Thomas W.
dc.date.accessioned2024-11-29T11:54:30Z
dc.date.available2024-11-29T11:54:30Z
dc.date.issued2024-11-29
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4186
dc.description.abstractIn [Ramanujan J. 52 (2020), 275-290], Romik considered the Taylor expansion of Jacobi's theta function $\theta_3(q)$ at $q=e^{-\pi}$ and encoded it in an integer sequence $(d(n))_{n\ge0}$ for which he provided a recursive procedure to compute the terms of the sequence. He observed intriguing behaviour of $d(n)$ modulo primes and prime powers. Here we prove (1) that $d(n)$ eventually vanishes modulo any prime power $p^e$ with $p\equiv3$ (mod 4), (2) that $d(n)$ is eventually periodic modulo any prime power $p^e$ with $p\equiv1$ (mod 4), and (3) that $d(n)$ is purely periodic modulo any 2-power $2^e$. Our results also provide more detailed information on period length, respectively from when on the sequence vanishes or becomes periodic. The corresponding bounds may not be optimal though, as computer data suggest. Our approach shows that the above congruence properties hold at a much finer, polynomial level.en_US
dc.description.sponsorshipWe thank Tanay Wakhare for helpful correspondence. The authors also thank the Mathematische Forschungsinstitut Oberwolfach for the opportunity of an Oberwolfach Research Fellowship in August/September 2024, during which they succeeded to improve the divisibility results for primes p ≡ 3 (mod 4) significantly.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2024-12
dc.subjectModular forms of half integer weighten_US
dc.subjectJacobi theta functionen_US
dc.subjectTaylor coefficientsen_US
dc.subjectCongruencesen_US
dc.titleThe Congruence Properties of Romik’s Sequence of Taylor Coefficients of Jacobi’s Theta Function $θ_3$en_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2024-12
local.scientificprogramOWRF 2024en_US
local.series.idOWP-2024-12en_US
local.subject.msc11en_US
local.subject.msc14en_US
dc.identifier.ppn1911801120


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige