dc.contributor.author | Bajpai, Jitendra | |
dc.contributor.author | Dona, Daniele | |
dc.date.accessioned | 2024-11-29T12:12:48Z | |
dc.date.available | 2024-11-29T12:12:48Z | |
dc.date.issued | 2024-11-29 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4187 | |
dc.description.abstract | We prove a version of Jordan's classification theorem for finite subgroups of $\mathrm{GL}_{n}(K)$ that is at the same time quantitatively explicit, CFSG-free, and valid for arbitrary $K$. This is the first proof to satisfy all three properties at once. Our overall strategy follows Larsen and Pink [24], with explicit computations based on techniques developed by the authors and Helfgott [2, 3], particularly in relation to dimensional estimates. | en_US |
dc.description.sponsorship | The second author was funded by a Young Researcher Fellowship from the HUN-REN Alfréd Rényi Institute of Mathematics, and by the Leibniz Fellowship 2405p from the Mathematisches Forschungsinstitut Oberwolfach (MFO).
The authors would like to thank the MFO for providing a wonderful environment for the development of this article. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2024-13 | |
dc.subject | Jordan’s theorem | en_US |
dc.subject | Subgroup structure | en_US |
dc.subject | Groups of Lie type | en_US |
dc.subject | Algebraic groups | en_US |
dc.title | A CFSG-Free Explicit Jordan’s Theorem over Arbitrary Fields | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2024-13 | |
local.scientificprogram | OWLF 2024 | en_US |
local.series.id | OWP-2024-13 | en_US |
local.subject.msc | 20 | en_US |
local.subject.msc | 14 | en_US |
dc.identifier.ppn | 191241452X | |