Show simple item record

Deep Learning for PDE-based Inverse Problems

dc.date.accessioned2025-01-08T19:41:26Z
dc.date.available2025-01-08T19:41:26Z
dc.date.issued2024
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4194
dc.description.abstractAnalysing learned concepts for PDE-based parameter identification problems requires input from different research areas such as inverse problems, partial differential equations, statistics and mathematical foundations of deep learning. This workshop brought together a critical mass of experts in the various field. A thorough mathematical theory for PDE-based inverse problems using learned concepts is within reach in the coming few years and the inspiration of this Oberwolfach meeting will substantially influence this development.
dc.titleDeep Learning for PDE-based Inverse Problems
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2024-48
local.series.idOWR-2024-48
local.subject.msc44
local.subject.msc35
local.subject.msc65
local.date-range27 Oct - 01 Nov 2024
local.workshopcode2444
local.workshoptitleDeep Learning for PDE-based Inverse Problems
local.organizersSimon Arridge, London; Peter Maaß, Bremen; Carola-Bibiane Schönlieb, Cambridge UK
local.report-nameWorkshop Report 2024,48
local.opc-photo-id2444
local.publishers-doi10.4171/OWR/2024/48


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record