dc.contributor.author | Jaramillo Puentes, Andrés | |
dc.contributor.author | Markwig, Hannah | |
dc.contributor.author | Pauli, Sabrina | |
dc.contributor.author | Röhrle, Felix | |
dc.date.accessioned | 2025-02-19T10:33:30Z | |
dc.date.available | 2025-02-19T10:33:30Z | |
dc.date.issued | 2025-02 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/4208 | |
dc.description | We thank Jesse Pajwani for pointing out that identities in the Grothendieck-Witt ring can be checked on multiquadratic finite ´etale algebras and for his help with computations. We thank Erwan Brugall´e, Andreas Gross, Marc Levine, Dhruv Ranganathan and Kirsten Wickelgren for useful discussions. The first, second and fourth author acknowledge support by DFG-grant MA 4797/9-1. The third author acknowledges support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collaborative Research Centre TRR 326 Geometry and Arithmetic of Uniformized Structures, project number 444845124. The first author thanks the Universität Duisburg-Essen and the Università degli Studi di Napoli Federico II for support. Part of this work was completed while the authors stayed as Research Fellows at the Mathematisches Forschungsinstitut Oberwolfach in March 2024. We thank the institute for hosting us and for providing ideal working conditions. | en_US |
dc.description.abstract | We prove that the quadratically enriched count of rational curves in a smooth toric del Pezzo surface passing through $k$-rational points and pairs of conjugate points in quadratic field extensions $k\subset k(\sqrt{d_i})$ can be determined by counting certain tropical stable maps through vertically stretched point conditions with a suitable multiplicity. Building on the floor diagram technique in tropical geometry, we provide an algorithm to compute these numbers.
<br>Our tropical algorithm computes not only these new quadratically enriched enumerative invariants, but simultaneously also the complex Gromov-Witten invariant, the real Welschinger invariant counting curves satisfying real point conditions only, the real Welschinger invariant of curves satisfying pairs of complex conjugate and real point conditions, and the quadratically enriched count of curves satisfying $k$-rational point conditions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2025-03 | |
dc.subject | Gromov-Witten Invariants | en_US |
dc.subject | Welschinger Invariants | en_US |
dc.subject | Tropical Curves | en_US |
dc.subject | Quadratically Enriched Counts | en_US |
dc.title | Quadratically Enriched Plane Curve Counting via Tropical Geometry | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2025-03 | |
local.scientificprogram | OWRF 2024 | en_US |
local.series.id | OWP-2025-03 | en_US |
local.subject.msc | 14 | en_US |
dc.identifier.ppn | 1919700129 | |