Show simple item record

Overparametrization, Regularization, Identifiability and Uncertainty in Machine Learning

dc.date.accessioned2025-03-04T09:31:45Z
dc.date.available2025-03-04T09:31:45Z
dc.date.issued2025
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4227
dc.description.abstractIn machine learning, a field addressing the extraction of information and structure from finite data with the means of computer science and mathematics, maps from finite-dimensional spaces of data or computations into spaces of higher, or infinite dimensionality are a central theme. The workshop brought together researchers with diverse viewpoints to discuss how different theoretical sub-communities within the field treat the resulting ill-posed operations, and what kind of features of algorithms and models can emerge as a result.
dc.titleOverparametrization, Regularization, Identifiability and Uncertainty in Machine Learning
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2025-4
local.series.idOWR-2025-4
local.subject.msc68
local.subject.msc62
local.date-range26 Jan - 31 Jan 2025
local.workshopcode2505
local.workshoptitleOverparametrization, Regularization, Identifiability and Uncertainty in Machine Learning
local.organizersNicolò Cesa-Bianchi, Milano; Philipp Hennig, Tübingen; Andreas Krause, Zürich; Ulrike von Luxburg, Tübingen
local.report-nameWorkshop Report 2025,4
local.opc-photo-id2505
local.publishers-doi10.4171/OWR/2025/4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record