Show simple item record

Arithmetic Geometry

dc.date.accessioned2025-05-21T08:47:06Z
dc.date.available2025-05-21T08:47:06Z
dc.date.issued2024
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4247
dc.description.abstractArithmetic geometry is at the interface between algebraic geometry and number theory, and studies schemes over the ring of integers of number fields, or their $p$-adic completions. The talks covered a wide range of topics including the categorical Langlands program, Shimura varieties, complex and $p$-adic Hodge theory, homotopy theory, and Diophantine geometry.
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleArithmetic Geometry
dc.rights.licenseUnless otherwise noted, the content of this report is licensed under Creative Commons Attribution-ShareAlike 4.0 International.*
dc.identifier.doi10.14760/OWR-2024-33
local.series.idOWR-2024-33
local.subject.msc14
local.subject.msc11
local.date-range14 Jul - 19 Jul 2024
local.workshopcode2429
local.workshoptitleArithmetic Geometry
local.organizersBhargav Bhatt, Princeton; Ana Caraiani, London; Gerd Faltings, Bonn; Peter Scholze, Bonn
local.report-nameWorkshop Report 2024,33
local.opc-photo-id2429
local.publishers-doi10.4171/OWR/2024/33


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-sa/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-sa/4.0/