Zur Kurzanzeige

dc.contributor.authorDouglass, J. Matthew
dc.contributor.authorPfeiffer, Götz
dc.contributor.authorRöhrle, Gerhard
dc.date.accessioned2025-09-23T10:11:42Z
dc.date.available2025-09-23T10:11:42Z
dc.date.issued2025-09
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4323
dc.descriptionAcknowledgements: Work on this paper began during a visit to the Mathematisches Forschungsinstitut Oberwolfach under the Oberwolfach Research Fellows Programme; we thank them for their support. J.M. Douglass would like to acknowledge that some of this material is based upon work supported by, and while serving at, the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.en_US
dc.description.abstractWe revisit the structure of the normalizer $N_W(P)$ of a parabolic subgroup $P$ in a finite Coxeter group $W$, originally described by Howlett. Building on Howlett's Lemma, which provides canonical complements for reflection subgroups, and inspired by a recent construction of Serre for involution centralizers, we refine this understanding by interpreting $N_W(P)$ as a subdirect product via Goursat's Lemma. Central to our approach is a Galois connection on the lattice of parabolic subgroups, which leads to a new decomposition \begin{align*} N_W(P) \cong (P \times Q) \rtimes ((A \times B) \rtimes C)\text, \end{align*} where each subgroup reflects a structural feature of the ambient Coxeter system. This perspective yields a more symmetric description of $N_W(P)$, organized around naturally associated reflection subgroups on mutually orthogonal subspaces of the reflection representation of $W$. Our analysis provides new conceptual clarity and includes a case-by-case classification for all irreducible finite Coxeter groups.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2025-10
dc.subjectGalois Connectionen_US
dc.subjectFinite Coxeter Groupen_US
dc.subjectGoursat’s Lemmaen_US
dc.subjectHowlett’s Lemmaen_US
dc.subjectHowlett Complementen_US
dc.subjectParabolic Subgroupen_US
dc.subjectNormalizeren_US
dc.subjectReflection Groupen_US
dc.subject.classification[MSC] 20F55; 06A15
dc.titleParabolic Normalizers in Finite Coxeter Groups as Subdirect Productsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2025-10
local.scientificprogramOWRF 2024en_US
local.series.idOWP-2025-10en_US
local.subject.msc20en_US
local.subject.msc06en_US
dc.identifier.ppn1937818020


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige