| dc.contributor.author | Brauner, Sarah | |
| dc.contributor.author | Commins, Patricia | |
| dc.contributor.author | Grinberg, Darij | |
| dc.contributor.author | Saliola, Franco | |
| dc.date.accessioned | 2025-11-25T07:59:23Z | |
| dc.date.available | 2025-11-25T07:59:23Z | |
| dc.date.issued | 2025-11 | |
| dc.identifier.uri | http://publications.mfo.de/handle/mfo/4346 | |
| dc.description | Acknowledgments: We thank Pavel Etingof, Nadia Lafrenière, and Vic Reiner for interesting and informative conversations.
This paper was started at the Mathematisches Forschungsinstitut Oberwolfach in October 2024, as the four authors were Oberwolfach Research Fellows (2442p), and finished at the ICERM program "Categorification and Computation in Algebraic Combinatorics" in Fall 2025. The first author is partially supported by the NSF MSPRF DMS-2303060 and the second author was partially supported by an NSF GRFP fellowship. The fourth author was supported by NSERC (RGPIN-2023-04476). The SageMath computer algebra system [22] was used to find several of the results. | en_US |
| dc.description | [MSC 2020] 20C08; 20C30; 60J10; 05E10 | en_US |
| dc.description.abstract | We generalize Reiner-Saliola-Welker's well-known but mysterious family of $k$-random-to-random shuffles from Markov chains on symmetric groups to Markov chains on the Type-$A$ Iwahori-Hecke algebras. We prove that the family of operators pairwise commutes and has eigenvalues that are polynomials in $q$ with non-negative integer coefficients. Our work generalizes work of Reiner-Saliola-Welker and Lafrenière for the symmetric group, and simplifies all known proofs in this case. | en_US |
| dc.language.iso | en_US | en_US |
| dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
| dc.relation.ispartofseries | Oberwolfach Preprints;2025-12 | |
| dc.subject | Hecke Algebra | en_US |
| dc.subject | Iwahori-Hecke Algebra | en_US |
| dc.subject | Symmetric Group Algebra | en_US |
| dc.subject | Random-to-Random Shuffle | en_US |
| dc.subject | Card Shuffling | en_US |
| dc.subject | Young-Jucys-Murphey Elements | en_US |
| dc.subject | Specht Modules | en_US |
| dc.subject | Young Tableaux | en_US |
| dc.subject | Permutations | en_US |
| dc.subject | Algebraic Combinatorics | en_US |
| dc.subject | Discrete Markov Chains | en_US |
| dc.subject | Representation Theory | en_US |
| dc.subject | q-Deformations | en_US |
| dc.title | The $q$-Deformed Random-to-Random Family in the Hecke Algebra | en_US |
| dc.type | Preprint | en_US |
| dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
| dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
| dc.identifier.doi | 10.14760/OWP-2025-12 | |
| local.series.id | OWP-2025-12 | en_US |
| local.subject.msc | 20 | en_US |
| local.subject.msc | 60 | en_US |
| local.subject.msc | 05 | en_US |